Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.
نویسندگان
چکیده
Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.
منابع مشابه
Photonic crystals Fabrication of Tunable Spherical Colloidal Crystals Immobilized in Soft Hydrogels**
Spherical colloidal crystals are three-dimensional periodic arrays of monodisperse colloidal particles with a spherical geometry. The spatial periodicity of the refractive index of the colloidal crystalline arrays results in an optical stop band and, hence, they act as photonic crystals in the optical regime. In contrast to conventional film-type colloidal crystals where the crystals are aligne...
متن کاملMicrowave-assisted self-organization of colloidal particles in confining aqueous droplets.
Monodisperse aqueous emulsion droplets encapsulating colloidal particles were produced in the oil phase, and controlled microwave irradiation of the aqueous drop phase created spherical colloidal crystals by so-called evaporation-induced self-organization of the colloidal particles. Unlike usual colloidal crystals, colloidal crystals in spherical symmetry (or photonic balls) possessed photonic ...
متن کاملStabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications.
Colloidal crystals in anisotropic matrices are extremely stable and versatile, but disassemble as soon as the anisotropy of the matrix disappears. We present an approach to first custom-assemble colloidal structures and subsequently stabilize them through photo-polymerisation of the liquid crystalline matrix. The resulting 2D colloidal assemblies are stable at high temperatures and can even be ...
متن کاملFabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam.
Free-standing "AMTIR-1" (Ge33As12Se55) chalcogenide glass films have been patterned using a focused ion beam (FIB) to create two-dimensional photonic crystal membranes. The triangular lattices were selected for a photonic bandgap relevant to fiber telecommunications. Optical measurements of transmission spectra as a function of incident angle showed clear signs of Fano resonances, indicating th...
متن کاملFabricating colloidal crystals and construction of ordered nanostructures
Colloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous coll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 11 8 شماره
صفحات -
تاریخ انتشار 2015